Additive Maps Preserving Idempotency of Products or Jordan Products of Operators

نویسندگان

چکیده مقاله:

Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual products of operators in both directions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear maps preserving the idempotency of Jordan products of operators

Let B(X ) be the algebra of all bounded linear operators on a complex Banach space X and let I(X ) be the set of non-zero idempotent operators in B(X ). A surjective map φ : B(X ) → B(X ) preserves nonzero idempotency of the Jordan products of two operators if for every pair A, B ∈ B(X ), the relation AB +BA ∈ I(X ) implies φ(A)φ(B)+φ(B)φ(A) ∈ I(X ). In this paper, the structures of linear surj...

متن کامل

Ela Linear Maps Preserving the Idempotency of Jordan Products of Operators

Let B(X ) be the algebra of all bounded linear operators on a complex Banach space X and let I(X ) be the set of non-zero idempotent operators in B(X ). A surjective map φ : B(X ) → B(X ) preserves nonzero idempotency of the Jordan products of two operators if for every pair A, B ∈ B(X ), the relation AB + BA ∈ I(X ) implies φ(A)φ(B) + φ(B)φ(A) ∈ I(X ). In this paper, the structures of linear s...

متن کامل

Maps Preserving Peripheral Spectrum of Jordan Products of Operators

Let A and B be (not necessarily unital or closed) standard operator algebras on complex Banach spaces X and Y , respectively. For a bounded linear operator A on X, the peripheral spectrum σπ(A) of A is defined by σπ(A) = {z ∈ σ(A) : |z| = maxw∈σ(A) |w|}, where σ(A) denotes the spectrum of A. Assume that Φ : A → B is a map and the range of Φ contains all operators with rank at most two. It is pr...

متن کامل

Additivity of maps preserving Jordan $eta_{ast}$-products on $C^{*}$-algebras

Let $mathcal{A}$ and $mathcal{B}$ be two $C^{*}$-algebras such that $mathcal{B}$ is prime. In this paper, we investigate the additivity of maps $Phi$ from $mathcal{A}$ onto $mathcal{B}$ that are bijective, unital and satisfy $Phi(AP+eta PA^{*})=Phi(A)Phi(P)+eta Phi(P)Phi(A)^{*},$ for all $Ainmathcal{A}$ and $Pin{P_{1},I_{mathcal{A}}-P_{1}}$ where $P_{1}$ is a nontrivial projection in $mathcal{A...

متن کامل

Maps preserving the nilpotency of products of operators

Let B(X) be the algebra of all bounded linear operators on the Banach space X, and let N (X) be the set of nilpotent operators in B(X). Suppose φ : B(X)→ B(X) is a surjective map such that A,B ∈ B(X) satisfy AB ∈ N (X) if and only if φ(A)φ(B) ∈ N (X). If X is infinite dimensional, then there exists a map f : B(X)→ C \ {0} such that one of the following holds: (a) There is a bijective bounded li...

متن کامل

additivity of maps preserving jordan $eta_{ast}$-products on $c^{*}$-algebras

let $mathcal{a}$ and $mathcal{b}$ be two $c^{*}$-algebras such that $mathcal{b}$ is prime. in this paper, we investigate the additivity of maps $phi$ from $mathcal{a}$ onto $mathcal{b}$ that are bijective, unital and satisfy $phi(ap+eta pa^{*})=phi(a)phi(p)+eta phi(p)phi(a)^{*},$ for all $ainmathcal{a}$ and $pin{p_{1},i_{mathcal{a}}-p_{1}}$ where $p_{1}$ is a nontrivial projection in $mathcal{a...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 11  شماره None

صفحات  131- 137

تاریخ انتشار 2016-11

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023